No announcement yet.

Finite El./ Hyperelastic Muscles

This topic is closed.
  • Filter
  • Time
  • Show
Clear All
new posts

  • Finite El./ Hyperelastic Muscles

    A promised summary of literature and the like pertaining to hyperelastic
    / finite element modelling of passive and active muscles.

    ************************************************** ********************************************

    I have a list of references which may help with material models and
    boundary conditions.

    Bartoo ML. Linke WA. Pollack GH.
    Department of Biology, University of York, United Kingdom.
    Basis of passive tension and stiffness in isolated rabbit myofibrils.
    American Journal of Physiology. 273(1 Pt 1):C266-76, 1997 Jul.

    Granzier HL. Irving TC.
    Department of Veterinary and Comparative Anatomy, Pharmacology, and
    Physiology, Washington State University, Pullman 99164-6520, USA.
    Passive tension in cardiac muscle: contribution of collagen,
    titin, microtubules, and intermediate filaments.
    Biophysical Journal. 68(3):1027-44, 1995 Mar.

    Tskhovrebova L. Trinick J. Sleep JA. Simmons RM.
    Muscle Research Group, Department of Veterinary Clinical Science,
    University, Langford, UK.
    Elasticity and unfolding of single molecules of the giant muscle
    titin [see comments].

    Nature. 387(6630):308-12, 1997 May 15.

    Arkin, A.M.: Absolute muscle power: the internal kinesiology of
    research, Research Seminar Notes, Dpt. Orth. Surg., State Univ. of Iowa,

    12D:123, 1938.
    Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
    Physiol. 3:295-318, 1891.
    Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
    Physiol. 4:399-409, 1893.
    Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
    Physiol. 5:149-206, 1894.
    Brand, P.W., et al.: Relative tension and potential excursion of
    muscles in the forearm and hand, J. Hand Surg. 6:209-219, 1981.
    Crawford, G.N.C.: An experimental study of muscle growth in the

    rabbit, J. Bone Joint Surg. 36B:294-303, 1954.
    Fick, A.: Statische Betrachtung der Muskulature des
    Z. Rationelle Med. 9:94-106, 1850.
    Fick, R.: Handbuch der Anatomie und Mechanik der Gelenke unter
    Berucksichtigung der bewegenden Muskeln, 1904-11, Vol. 3, Spezielle
    Gelenk-und Muskelmechanik, Jena, 1911, Gustav Fischer.
    Goldspink, G.: The adaptation of muscle to a new functional length.
    Anderson, D.J., and Matthew, B., editors: Mastication, Bristol, England,

    1976, John Wright & Sons, Ltd. pp. 90-99.
    Gordon, A.M., et al.: Tension development in highly stretched
    vertebrate muscle fibres, J. Physiol. 184:143-169, 1966.
    Hill, A.V.: The series elastic component of muscle, Proc. R. Soc.
    Lond. (Biol.) 137: 273-280, 1950.
    Hill, A.V.: The mechanics of active muscles, Proc. R. Soc. Lond.
    (Biol.) 141:104-117, 1953.
    Holland, G.J.: The physiology of flexibility: a review of the
    literature, Kinesiology Review 1968, p. 49.
    Huxley, A.F. and Peachey, L.D.: The maximum length for contraction
    vertebrate striated muscle, J. Physiol. (London) 156:150-165, 1961.
    Jansen, M.: Ueber die Lange der Muskelbundel und ihre Bedeutung fur

    die Entstehung der spastischen Kontrakturen, Z. Orthop. Chir. 36:1-57,
    Omer, G.E., et al.: Determination of physiological length of a
    reconstructed muscle-tendon unit through muscle stimulation, J. Bone
    Surg. 47A:304-312, 1965.
    Steindler, A.: Kinesiology of the human body, Springfield, Ill.,

    1955, Charles C Thomas, p. 47.
    Steno, N.: Elementorum myologiae specimen s. musculi descriptio
    geometrica, 1667. In Maar, V., editor: Opera Philosophico, Copenhagen,
    1910, vol. 2, p. 108. Quoted in Bastholm, E.: The history of muscle
    physiology, Copenhagen, 1950, Ejnar Munksgaard.
    Tarbary, J.C., et al.: Physiological and structural changes in the
    cat's soleus muscle due to immobilization of different lengths by
    casts, J. Physiol. 224:231-244, 1972.
    Tarbary, J.C., et al.: Functional adaptation of sarcomere number at

    normal cat muscle, J. Physiol. Paris, 72:277-291, 1976.
    de la Tour, E.H., et al.: Decrease of muscle extensibility and
    reduction of sarcomere number in soleus muscle following a local
    of tetanus toxin, J. Neurol. Sci. 40:123-131, 1979.
    Weber, W., Weber, E.: Mechanik der menschlichen Gehwerkzeuge,
    Gottingen, 1836, Dieterich.

    5* Little, J.W., Massagli, T.L.: Spasticity and associated
    of muscle tone, Chapt 32, pp666-80 in Rehabilitation Medicine:
    and Practice Lippincott, Philadelphia, 1993
    6*Ashworth,B.:Carisoprodol in multiple sclerosis, Practioner

    7* Keir, P., Wells, R., and Ranney, D. Passive Stiffness Of The
    Musculature and Functional Implications, Clinical Biomechanics,
    11(7):401-409, 1996.

    Kaufman, K.R., An, K.N., Chao, E.Y.: Incorporation of muscle
    into the muscle length tension relationship, J. Biomech. 22:943-948,
    Lieber, R.L.: Skeletal Muscle Structure and Function; Implications for
    Rehabilitation and Sports Medicine, Williams and Wilkins, Baltimore

    Patel, T.J. and R.L. Lieber. (1997) Force transmission in skeletal
    from actomyosin to external tendons. Exercise and Sport Science Reviews

    Anne Hollister, MD
    LSUMC-S / Orthopaedic Surgery
    1501 Kings Hwy.
    Shreveport, LA 71130-3932
    ************************************************** ********************************************

    Hi Jeff,

    I saw your post on BIOMCH-L regarding constitutive models for
    contracting skeletal muscle. I have been working on a simple
    extension of a Hill-type model to 3D in the context of a
    transversely isotropic hyperelastic constiutive model for
    ligaments/tendons. The application is for implementation in a
    commercial finite element code for a sponsor. You may want to
    look in the literature at the names of Julius Guccione
    (Washington University) or Andrew McCulloch (UC San Diego) for
    other approaches. I would be very interested in receiving an
    email of the reference names that you receive.



    Jeffrey A. Weiss, Ph.D.
    Orthopedic Biomechanics Institute, and
    Department of Bioengineering, University of Utah
    phone: 801-269-4035 fax: 801-269-4015
    ************************************************** ********************************************

    Hi Jeff. I didn't know there were other people in Sydney interested in
    stuff. I'd be most interested to hear about your research.

    I can only think of two groups who have been applying finite element
    to skeletal muscles (although there may well be many others). They are
    Huijing's group in the Netherlands (he has joint appointments at
    of Twente and Vrije University - a PhD student of his named BJJJ van der

    Linden presented papers of FEM models at the 1995 and 1997 meetings of
    International Society of Biomechanics) and Peter Hunter's group at Dep
    Engineering Science at University of Auckland. Huijing's group has been
    modelling skeletal muscle mechanics for about 15 years now, and Hunter's

    group is doing amazing models of body surface potential maps (amongst
    things) and their models incorporate FEM models of the skeletal muscles
    the chest wall. I don't know of any published papers which will help
    but I can fax you abtracts if that would help.

    Rob Herbert
    School of Physiotherapy
    University of Sydney

    ************************************************** ********************************************


    JEFF ARMITSTEAD - Graduate School of Biomedical Engineering
    Samuels Building, UNSW Tel:+61 2 9385 3916
    Sydney 2052 AUSTRALIA Fax:+61 2 9663 2108

    To unsubscribe send UNSUBSCRIBE BIOMCH-L to
    For information and archives: