A promised summary of literature and the like pertaining to hyperelastic
/ finite element modelling of passive and active muscles.
************************************************** ********************************************
I have a list of references which may help with material models and
boundary conditions.
Authors
Bartoo ML. Linke WA. Pollack GH.
Institution
Department of Biology, University of York, United Kingdom.
Title
Basis of passive tension and stiffness in isolated rabbit myofibrils.
Source
American Journal of Physiology. 273(1 Pt 1):C266-76, 1997 Jul.
Authors
Granzier HL. Irving TC.
Institution
Department of Veterinary and Comparative Anatomy, Pharmacology, and
Physiology, Washington State University, Pullman 99164-6520, USA.
Title
Passive tension in cardiac muscle: contribution of collagen,
titin, microtubules, and intermediate filaments.
Source
Biophysical Journal. 68(3):1027-44, 1995 Mar.
Authors
Tskhovrebova L. Trinick J. Sleep JA. Simmons RM.
Institution
Muscle Research Group, Department of Veterinary Clinical Science,
Bristol
University, Langford, UK.
Title
Elasticity and unfolding of single molecules of the giant muscle
protein
titin [see comments].
Source
Nature. 387(6630):308-12, 1997 May 15.
Arkin, A.M.: Absolute muscle power: the internal kinesiology of
muscle
research, Research Seminar Notes, Dpt. Orth. Surg., State Univ. of Iowa,
12D:123, 1938.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 3:295-318, 1891.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 4:399-409, 1893.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 5:149-206, 1894.
Brand, P.W., et al.: Relative tension and potential excursion of
muscles in the forearm and hand, J. Hand Surg. 6:209-219, 1981.
Crawford, G.N.C.: An experimental study of muscle growth in the
rabbit, J. Bone Joint Surg. 36B:294-303, 1954.
Fick, A.: Statische Betrachtung der Muskulature des
Oberschenkels,
Z. Rationelle Med. 9:94-106, 1850.
Fick, R.: Handbuch der Anatomie und Mechanik der Gelenke unter
Berucksichtigung der bewegenden Muskeln, 1904-11, Vol. 3, Spezielle
Gelenk-und Muskelmechanik, Jena, 1911, Gustav Fischer.
Goldspink, G.: The adaptation of muscle to a new functional length.
In
Anderson, D.J., and Matthew, B., editors: Mastication, Bristol, England,
1976, John Wright & Sons, Ltd. pp. 90-99.
Gordon, A.M., et al.: Tension development in highly stretched
vertebrate muscle fibres, J. Physiol. 184:143-169, 1966.
Hill, A.V.: The series elastic component of muscle, Proc. R. Soc.
Lond. (Biol.) 137: 273-280, 1950.
Hill, A.V.: The mechanics of active muscles, Proc. R. Soc. Lond.
(Biol.) 141:104-117, 1953.
Holland, G.J.: The physiology of flexibility: a review of the
literature, Kinesiology Review 1968, p. 49.
Huxley, A.F. and Peachey, L.D.: The maximum length for contraction
in
vertebrate striated muscle, J. Physiol. (London) 156:150-165, 1961.
Jansen, M.: Ueber die Lange der Muskelbundel und ihre Bedeutung fur
die Entstehung der spastischen Kontrakturen, Z. Orthop. Chir. 36:1-57,
1917.
Omer, G.E., et al.: Determination of physiological length of a
reconstructed muscle-tendon unit through muscle stimulation, J. Bone
Joint
Surg. 47A:304-312, 1965.
Steindler, A.: Kinesiology of the human body, Springfield, Ill.,
1955, Charles C Thomas, p. 47.
Steno, N.: Elementorum myologiae specimen s. musculi descriptio
geometrica, 1667. In Maar, V., editor: Opera Philosophico, Copenhagen,
1910, vol. 2, p. 108. Quoted in Bastholm, E.: The history of muscle
physiology, Copenhagen, 1950, Ejnar Munksgaard.
Tarbary, J.C., et al.: Physiological and structural changes in the
cat's soleus muscle due to immobilization of different lengths by
plaster
casts, J. Physiol. 224:231-244, 1972.
Tarbary, J.C., et al.: Functional adaptation of sarcomere number at
normal cat muscle, J. Physiol. Paris, 72:277-291, 1976.
de la Tour, E.H., et al.: Decrease of muscle extensibility and
reduction of sarcomere number in soleus muscle following a local
injection
of tetanus toxin, J. Neurol. Sci. 40:123-131, 1979.
Weber, W., Weber, E.: Mechanik der menschlichen Gehwerkzeuge,
Gottingen, 1836, Dieterich.
5* Little, J.W., Massagli, T.L.: Spasticity and associated
abnormalities
of muscle tone, Chapt 32, pp666-80 in Rehabilitation Medicine:
Principles
and Practice Lippincott, Philadelphia, 1993
6*Ashworth,B.:Carisoprodol in multiple sclerosis, Practioner
192:540-42,1964.
7* Keir, P., Wells, R., and Ranney, D. Passive Stiffness Of The
Forearm
Musculature and Functional Implications, Clinical Biomechanics,
11(7):401-409, 1996.
Kaufman, K.R., An, K.N., Chao, E.Y.: Incorporation of muscle
architecture
into the muscle length tension relationship, J. Biomech. 22:943-948,
1989.
Lieber, R.L.: Skeletal Muscle Structure and Function; Implications for
Rehabilitation and Sports Medicine, Williams and Wilkins, Baltimore
1992.
Patel, T.J. and R.L. Lieber. (1997) Force transmission in skeletal
muscle:
from actomyosin to external tendons. Exercise and Sport Science Reviews
Anne Hollister, MD
LSUMC-S / Orthopaedic Surgery
1501 Kings Hwy.
Shreveport, LA 71130-3932
email: anne@www.ortho.lsumc.edu
************************************************** ********************************************
Hi Jeff,
I saw your post on BIOMCH-L regarding constitutive models for
contracting skeletal muscle. I have been working on a simple
extension of a Hill-type model to 3D in the context of a
transversely isotropic hyperelastic constiutive model for
ligaments/tendons. The application is for implementation in a
commercial finite element code for a sponsor. You may want to
look in the literature at the names of Julius Guccione
(Washington University) or Andrew McCulloch (UC San Diego) for
other approaches. I would be very interested in receiving an
email of the reference names that you receive.
Cheers,
Jeff
Jeffrey A. Weiss, Ph.D.
Orthopedic Biomechanics Institute, and
Department of Bioengineering, University of Utah
phone: 801-269-4035 fax: 801-269-4015 jeff@usi.utah.edu
http://www.cs.utah.edu/~weiss/
************************************************** ********************************************
Hi Jeff. I didn't know there were other people in Sydney interested in
this
stuff. I'd be most interested to hear about your research.
I can only think of two groups who have been applying finite element
models
to skeletal muscles (although there may well be many others). They are
Peter
Huijing's group in the Netherlands (he has joint appointments at
University
of Twente and Vrije University - a PhD student of his named BJJJ van der
Linden presented papers of FEM models at the 1995 and 1997 meetings of
the
International Society of Biomechanics) and Peter Hunter's group at Dep
Engineering Science at University of Auckland. Huijing's group has been
modelling skeletal muscle mechanics for about 15 years now, and Hunter's
group is doing amazing models of body surface potential maps (amongst
other
things) and their models incorporate FEM models of the skeletal muscles
of
the chest wall. I don't know of any published papers which will help
you,
but I can fax you abtracts if that would help.
Rob Herbert
School of Physiotherapy
University of Sydney
************************************************** ********************************************
--
JEFF ARMITSTEAD - Graduate School of Biomedical Engineering
Samuels Building, UNSW Tel:+61 2 9385 3916
Sydney 2052 AUSTRALIA Fax:+61 2 9663 2108
Web: http://strummer.gsbme.unsw.edu.au/~jeffa/
--
-------------------------------------------------------------------
To unsubscribe send UNSUBSCRIBE BIOMCH-L to LISTSERV@nic.surfnet.nl
For information and archives: http://www.bme.ccf.org/isb/biomch-l
-------------------------------------------------------------------
/ finite element modelling of passive and active muscles.
************************************************** ********************************************
I have a list of references which may help with material models and
boundary conditions.
Authors
Bartoo ML. Linke WA. Pollack GH.
Institution
Department of Biology, University of York, United Kingdom.
Title
Basis of passive tension and stiffness in isolated rabbit myofibrils.
Source
American Journal of Physiology. 273(1 Pt 1):C266-76, 1997 Jul.
Authors
Granzier HL. Irving TC.
Institution
Department of Veterinary and Comparative Anatomy, Pharmacology, and
Physiology, Washington State University, Pullman 99164-6520, USA.
Title
Passive tension in cardiac muscle: contribution of collagen,
titin, microtubules, and intermediate filaments.
Source
Biophysical Journal. 68(3):1027-44, 1995 Mar.
Authors
Tskhovrebova L. Trinick J. Sleep JA. Simmons RM.
Institution
Muscle Research Group, Department of Veterinary Clinical Science,
Bristol
University, Langford, UK.
Title
Elasticity and unfolding of single molecules of the giant muscle
protein
titin [see comments].
Source
Nature. 387(6630):308-12, 1997 May 15.
Arkin, A.M.: Absolute muscle power: the internal kinesiology of
muscle
research, Research Seminar Notes, Dpt. Orth. Surg., State Univ. of Iowa,
12D:123, 1938.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 3:295-318, 1891.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 4:399-409, 1893.
Blix, M.: Die Lange und die Spannung des Muskels, Skand. Arch.
Physiol. 5:149-206, 1894.
Brand, P.W., et al.: Relative tension and potential excursion of
muscles in the forearm and hand, J. Hand Surg. 6:209-219, 1981.
Crawford, G.N.C.: An experimental study of muscle growth in the
rabbit, J. Bone Joint Surg. 36B:294-303, 1954.
Fick, A.: Statische Betrachtung der Muskulature des
Oberschenkels,
Z. Rationelle Med. 9:94-106, 1850.
Fick, R.: Handbuch der Anatomie und Mechanik der Gelenke unter
Berucksichtigung der bewegenden Muskeln, 1904-11, Vol. 3, Spezielle
Gelenk-und Muskelmechanik, Jena, 1911, Gustav Fischer.
Goldspink, G.: The adaptation of muscle to a new functional length.
In
Anderson, D.J., and Matthew, B., editors: Mastication, Bristol, England,
1976, John Wright & Sons, Ltd. pp. 90-99.
Gordon, A.M., et al.: Tension development in highly stretched
vertebrate muscle fibres, J. Physiol. 184:143-169, 1966.
Hill, A.V.: The series elastic component of muscle, Proc. R. Soc.
Lond. (Biol.) 137: 273-280, 1950.
Hill, A.V.: The mechanics of active muscles, Proc. R. Soc. Lond.
(Biol.) 141:104-117, 1953.
Holland, G.J.: The physiology of flexibility: a review of the
literature, Kinesiology Review 1968, p. 49.
Huxley, A.F. and Peachey, L.D.: The maximum length for contraction
in
vertebrate striated muscle, J. Physiol. (London) 156:150-165, 1961.
Jansen, M.: Ueber die Lange der Muskelbundel und ihre Bedeutung fur
die Entstehung der spastischen Kontrakturen, Z. Orthop. Chir. 36:1-57,
1917.
Omer, G.E., et al.: Determination of physiological length of a
reconstructed muscle-tendon unit through muscle stimulation, J. Bone
Joint
Surg. 47A:304-312, 1965.
Steindler, A.: Kinesiology of the human body, Springfield, Ill.,
1955, Charles C Thomas, p. 47.
Steno, N.: Elementorum myologiae specimen s. musculi descriptio
geometrica, 1667. In Maar, V., editor: Opera Philosophico, Copenhagen,
1910, vol. 2, p. 108. Quoted in Bastholm, E.: The history of muscle
physiology, Copenhagen, 1950, Ejnar Munksgaard.
Tarbary, J.C., et al.: Physiological and structural changes in the
cat's soleus muscle due to immobilization of different lengths by
plaster
casts, J. Physiol. 224:231-244, 1972.
Tarbary, J.C., et al.: Functional adaptation of sarcomere number at
normal cat muscle, J. Physiol. Paris, 72:277-291, 1976.
de la Tour, E.H., et al.: Decrease of muscle extensibility and
reduction of sarcomere number in soleus muscle following a local
injection
of tetanus toxin, J. Neurol. Sci. 40:123-131, 1979.
Weber, W., Weber, E.: Mechanik der menschlichen Gehwerkzeuge,
Gottingen, 1836, Dieterich.
5* Little, J.W., Massagli, T.L.: Spasticity and associated
abnormalities
of muscle tone, Chapt 32, pp666-80 in Rehabilitation Medicine:
Principles
and Practice Lippincott, Philadelphia, 1993
6*Ashworth,B.:Carisoprodol in multiple sclerosis, Practioner
192:540-42,1964.
7* Keir, P., Wells, R., and Ranney, D. Passive Stiffness Of The
Forearm
Musculature and Functional Implications, Clinical Biomechanics,
11(7):401-409, 1996.
Kaufman, K.R., An, K.N., Chao, E.Y.: Incorporation of muscle
architecture
into the muscle length tension relationship, J. Biomech. 22:943-948,
1989.
Lieber, R.L.: Skeletal Muscle Structure and Function; Implications for
Rehabilitation and Sports Medicine, Williams and Wilkins, Baltimore
1992.
Patel, T.J. and R.L. Lieber. (1997) Force transmission in skeletal
muscle:
from actomyosin to external tendons. Exercise and Sport Science Reviews
Anne Hollister, MD
LSUMC-S / Orthopaedic Surgery
1501 Kings Hwy.
Shreveport, LA 71130-3932
email: anne@www.ortho.lsumc.edu
************************************************** ********************************************
Hi Jeff,
I saw your post on BIOMCH-L regarding constitutive models for
contracting skeletal muscle. I have been working on a simple
extension of a Hill-type model to 3D in the context of a
transversely isotropic hyperelastic constiutive model for
ligaments/tendons. The application is for implementation in a
commercial finite element code for a sponsor. You may want to
look in the literature at the names of Julius Guccione
(Washington University) or Andrew McCulloch (UC San Diego) for
other approaches. I would be very interested in receiving an
email of the reference names that you receive.
Cheers,
Jeff
Jeffrey A. Weiss, Ph.D.
Orthopedic Biomechanics Institute, and
Department of Bioengineering, University of Utah
phone: 801-269-4035 fax: 801-269-4015 jeff@usi.utah.edu
http://www.cs.utah.edu/~weiss/
************************************************** ********************************************
Hi Jeff. I didn't know there were other people in Sydney interested in
this
stuff. I'd be most interested to hear about your research.
I can only think of two groups who have been applying finite element
models
to skeletal muscles (although there may well be many others). They are
Peter
Huijing's group in the Netherlands (he has joint appointments at
University
of Twente and Vrije University - a PhD student of his named BJJJ van der
Linden presented papers of FEM models at the 1995 and 1997 meetings of
the
International Society of Biomechanics) and Peter Hunter's group at Dep
Engineering Science at University of Auckland. Huijing's group has been
modelling skeletal muscle mechanics for about 15 years now, and Hunter's
group is doing amazing models of body surface potential maps (amongst
other
things) and their models incorporate FEM models of the skeletal muscles
of
the chest wall. I don't know of any published papers which will help
you,
but I can fax you abtracts if that would help.
Rob Herbert
School of Physiotherapy
University of Sydney
************************************************** ********************************************
--
JEFF ARMITSTEAD - Graduate School of Biomedical Engineering
Samuels Building, UNSW Tel:+61 2 9385 3916
Sydney 2052 AUSTRALIA Fax:+61 2 9663 2108
Web: http://strummer.gsbme.unsw.edu.au/~jeffa/
--
-------------------------------------------------------------------
To unsubscribe send UNSUBSCRIBE BIOMCH-L to LISTSERV@nic.surfnet.nl
For information and archives: http://www.bme.ccf.org/isb/biomch-l
-------------------------------------------------------------------